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ABSTRACT

This report documents the accomplishments of the NASA sponsored

effort to develop performance; evaluation capabilities for the design

of physical systems. These accomplishments are:

Development of a theory of limiting performance of

large systems subject to steady state inputs

Application and modification of PERFORM, the computa-

tional capability for the limiting performance of

systems with transient inputs

Demonstration that use of an inherently smooth control

force for a limiting performance calculation improves

the system identification phase of the design process

for physical systems subjected to transient loading.
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INTRODUCTION

The primary goals of this study were to formulate and develop a

capability for the limiting performance of large steady state systems.

It was shown early in the study that the previously developed capability

for transient systems could not be extended to steady state environ-

ments. It was necessary to begin anew and formulate a different theory

of limiting performance. This new theory has been applied to several

simple systems. Most of this report deals with the formulation of the

limiting performance problem for steady state systems.

LIMITING PERFORMANCE OF STEADY STATE SYSTEMS

The concept and importance of limiting performance of mechanical

systems is described in Ref. I.

The formulation of the limiting performance study of a mechanical

system subject to steady state sinusoidal loading is given in

Appendix IA. The formulation is in terms of a linear programming

problem. The underlying concept in this formulation is the use of

a Fourier expansion to represent both the responses and control

forces. The coefficients in the Fourier expansion of control forces

are the variables to be found. This formulation is applied to a

single degree of freedom (SDF) system for both linear and nonlinear

control forces in Appendix IB. The solution for the linear case

corresponds to results in Ref. I, while for the general case the

solution compares well with results obtained by an optimal control

approach (Ref. 2).

The formulation of Appendix IA is time-dependent. For a linear

system the problem is reformulated in Appendix IIA as a time-independent

nonlinear programming problem. The merit of this formulation is its

time-independence with a concomitant reduction in the dimension of the

problem. The advantage of obtaining the limiting performance of a

system without multiple analyses of the system has been retained.
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This formulation is applied to two special cases in Appendix IIB.

In both cases the results agree with known solutions.

The steady state limiting perforfmance solution Is extended to

systems with multiple forcing functions of different frequencies in

Appendix II1.

The major remaining unresolved problem for the steady state

formulation is that of limiting performance of systems subject to

forcing functions with frequencies varying over a prescribed range.

The present formulations are restricted to systems subjected to

loading at a prescribed frequency. The study of the frequency range

problem is continuing.

APPLICATION AND MODIFICATIONS OF PERFORM

During the first year of this effort a computer capability

(PERFORM) was developed for calculating the limiting performance of

systems with transient inputs. The final report covering this

effort contains detailed documentation and applications of PERFORM.

This report has been revised and is now entitled PERFORM - A PERFORMANCE

OPTIMIZING COMPUTER PROGRAM FOR DYNAMIC SYSTEMS SUBJECT TO TRANSIENT

LOADINGS. The revised report contains new results for a train impact

problem and a STOL ride control problem. The application to the train

impact problem was used as part of the paper "Limiting Performance of

Ground Transportation Vehicles Subject to Transient Loading" (Ref. 3)

presented at the AIAA/ASME/ASCE 13th Structures, Structural Dynamics,

and Materials Conference. In the problem, the train impact model from

Ref. 4 is modified so that the cushion or shock absorber is replaced

by a control force. The problem is to find the minimum force that

must be transmitted to the lading for a given cushion travel distance

under specified impact conditions. Performance tradeoff diagrams were

computed. Details of the problem formulation are given in Ref. 3.
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The limiting performance problem of the ride control system

for the Twin-Otter STOL airplane (Ref. 5) has been put in PERFORM

format. Computations of the sort shwa~- in- Fig.l [ were made. Here

the tradeoff between the min-max acceleration at the center of gravity

of the airplane and the level of controls was calculated using

PERFORM1. Details of the formulation are to be found in Ref. 5.

PERFORM has been modified to permit its use in conjunction with

OPTIMA, a CDC computer software system that can solve large linear

programming problems. Previously, the IBM program MPS/360 was used.

SYSTEM IDENTIFICATION

The use of a Fourier series expansion of control forces in the

steady state problem suggested a possible application for the design

of transient systems. It was shown that use of the "smooth" control

force employed in the steady state problem for the limiting performance

of transient systems eases the task of Identifying the corresponding

suboptimal design configuration. Heretofore, transient systems had

been designed using the limiting performance based on control forces

that were given a piecewise constant time discretization. This

application of the Fourier series to limiting performance problems

was demonstrated for single and two degree of freedom systems.
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4 - only ul is active ( i.e. u2 = 0)

o - both ul and u2 are active

u
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= elevator angular deflection

'%--u2 = flap angular deflection
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Fig . I Limiting Performance of Twin-Otter Airplane
Ride Control System 
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APPENDIX IA

Formulation of the Limitin9 Performance Problem for a Dynamic

System Subject to Steady-State Sinusoidal Disturbances.

Consider a

of motion:

MX + CX

where

dynamic system described by the following equations

+ KX + VO = Ff (I)

N x N

N x N

N x N

N x J

N x L

and N = no. of

J = no. of

L = no. of

mass mtr-i-x

damping matrix

stiffness matrix

coefficient matrix associated with
control force vector

coefficient matrix associated with
forcing function vector

degrees of freedom of the system

isolators or controllers

disturbances applied on the system

Let

= f0 sinwt

6

fsi nwt

f si nwt'

fL snwt

(2)



where

f0

f2

f.
- L

Assume

0 I i siniwt + U0i cosiwt
= Ihere

where

Us 

Ulsi

U2 si

UJ S

m = number of pairs of terms used in the

of U

Xsi siniwt + Xci costwt]

Fourier representation

(4)

where

Xs
SI

X

x2s i

_XNsl

Xl ci

X2ci

- Nc

7

(3)

Ulci

U2 cI

UJci

(3a)

Similarly, assume

m
X = E

i = I

Uc I =

Xci



Define

i = uI =
c, oci

Substitute (3), (4) into (I) and use (5) io obta.in

X. = w.U.
I -I I -i 0

where

-V I

0 I
_ - I

I if i = i

61i = if i I

2+ K

ZS'

= _

-CiW

Y. =
-I

Ciw -MW 2 i 2 + K

Thus, from equation (6), all the coefficients in the Fourier ex-

pansion of the responses (i.e. X's) can be expressed in terms of those

of U's.

From Eqs. (6) and (4) we get

X = Rm + +T fo (8)-in m -m 0

8
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where

R=WSS
I
sinwt + WCS coswt

......WSS sinmwt + WCS cosmwt~m m~

m

-m i=l LI

U
m U

m

WSCI sinwt + WCC
i

coswt

WSC sinmwt + WCC cosmwt]
-m - m 

siniwt + ZCi cosiwt
-- i

Usi

U.
cI

U
sm

U
cm

(9)

(10)

and from (3)

U = SC U-fm m

where

SC =nIt cositni I ISCm=[I sint I------tI- I I sinmt 1 I cosmwt

I = J x J identity matrix

We have expressed X, U in terms of Um, a set of unknown

numbers. Note that the matrices T , R , SC are all functions of time.

Suppose the limiting performance problem of interest can be stated

as: Find the U that minimizes the maximum i while subject to the con-

straints

YLi & 0 i YU

where

i = PI X + P2 X + P3 X + P4 U + P5 f (II)
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0 = YI X + Y2 X + Y3 X + Y4 U + Y5 f (12)

This problem can be converted to: Find ~, U such that ~ is minimized

subject to

l.1 < -S for j = I, 2,...NOB
~~~~~~~~~~~~~J ~~~~(13)

YL. < O0 < YU. for i = I, 2,...NOC

where

NOB = number of objective functions

NOC = number of constraints

The problem defined by (13) is one of linear programming, i.e.

Find z

to minimize c z

subject to H z = G

where

Z = 1 C =[I, O. o..., o]I
-I , RG

H = + RG

-i----O IRY

G = -TG f

-i 0

YU - TY f

YL -TY f
-- n 0

where

RG = PI R2 + P2 RI + P3 R + P4 SC
-- m --- m -- n - -m ---
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TG = PIT2 + P2TI + P3T + P5f slnwt
- -- - -m -- n - o

RY = YIR2 + Y2RI + Y3R + Y4SC
-fl --- mfl -- m --- -- qn

TY = YIT2 + Y2TI + Y3T + Y5f sinwt-m -- im --- -- m -. o

Here R T. are functions of time and

R2 = R (t)-m -

RI = R (t)
-- m -m

T2 =T (t)
-fn -Im

TI = T (t)
-mq -m

II



APPENDIX IB

Solutions of Limiting Performance Problem for Single Degree of Freedom

System

Consider the SDF problem (Fig. I-I) of finding U such that

= maxlZj = maxlUl is minimized while IXI < A

The equation of motion Is

X
mZ + U = 0

Z = X + f = X + slnwt

These give
·..f = s Inot
X + U = W2 sinwt sln

Figure I-I
for a unit mass.

For A = 0.5, w = 20, the optimal control approach (Ref. 2) gives mint = 162.4,

The same problem has been solved by linear prograrroing using 9 pairs of

terms in a Fourier representation of U, and the result Is min~ = 163.2.

These solutions are very close. The optimal control approach is prac-

tical for simple systems only, while the linear programming formulation

applies to large systems.

For the first time In limiting performance studies it is possible

to distinguish between linear and nonlinear control forces. If the

Fourier series Is restricted to one sine and one cosine term then the per-

formance of a linear system is obtained. For the linear SDF problem,

the linear programming formulation provides the same solution calculated

for this case in Ref. I. The new formulation Is significant because the

treatment of Ref. I cannot be extended to complex systems to which the

linear programming formulation can. be. applied.
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APPENDIX IIA

Formulation of a Time-independent Limiting Performance Solution for Linear

Dynamic Systems Subject to Sinusoidal Inputs

Consider a multidegree of' freedom system. described by

MX + CX + KX + VU = F f sinwt (I)

Since we seek the limiting performance for a linear system, let

U = Us sinwt + U coswt
S c (2)

X = X sinwt + X coswt
s c

Substitute (2) Into (I) to give

[s W] [ + Z fg (3)c-] I01
where

FMw2 +K
W= I

CW

-1

-CWV 

-_M 2 + K 0 -V_ _ _ 

WSS WSC

WCS WCC

Z = -_M2 + K -C [F ZS

C_.? _M_2 +'K ZC

Let the objective function be

~ = PIX + P2X + P3X + P4U + P5f

and the constraint be

L 'YIX + Y2X + Y3X + Y4U + Y5f <'i

13
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Using (2) and (3), (4) and (5) becorat.

= OD sinwt + c coswt (6)

and

Y[L 6 ~ sinut + Q
S C

where

= -Pi WSS U 2 -PI WSC 0U 2 -PI ZS f0m 2
s - S -- c-- 

-P2 WCS U w -P2 WCC U o + P3 WSS U
- s - C S- 

(7)

(8)

+P3 WSC U +P3 ZS f + P4U +P5 f
- c O -s O

The quantity %c is the same as

spectively. 0 and 0c are the

by YI ..... Y5.

From (6), we can write

$ with
S

same, aas

WCS, WCC replacing WSS, WSC re-

s, c with PI ..... P5 replaced
~s' c -ihP...

max Y. = 2
I si

(9)cli

and (7) is equivalent to

0 2
Si

+ 0 .2 s y.2
cI I

since, in general, YL
I
= -YU

i

Hence, if we define

si2'+ ci 2] for I = 1, 2, ..., NOB

the limiting performance problem can be restated as: Find O, US,

such that

* is minimized and

+ f 2 S 2 for i = I, 2,.....NOB
ci

+ O .2 < yu 2 j = I 2,2.....NOC
c
j

- j 

14

f =.max

(10)

2
si

and

.2
sj

c

(I 1)

cost:t; . ,YU



where NOB = no. of objective functions

NOC = no. of constraints

Using (8), everything In (11) can, be:hexprss&iin terms of Us and

U Note that the time depende-ncy of the response variables has been

eliminated. The problem posed by (II) Is one of nonlinear programming.
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APPENDIX 118

Examples of Limitino Performance Bounds Based on the Time-Independent

Formulation

I. SDF system (Fig. 11-1)

The equations of motion are

mZ + U = O

Z = X + f = X + f sinwt

If m =

X + U = 2 f 0 sInwt fO sinwt

Figure I1-1 (1)

We want to find U that minimizes JUI subject to JXJ <A

Let

U = U sinwt + U coswt
s c (2)

X = X sinwt + X coswt
s c

Then, following the previous formulation,

UI U
X s -f X =c

5 2 0 C W2

The problem now is to find U that minimizes (U 2 + U 2) subject to

U U
(X 2 + X 2) = ( s _fo)2 + ( A(3)

(Xs c 2 0 2

The solution can be found easily (e.g. by graphical means),

We get

Us = m2 (fo - A)

U = 0.0 (4)

maxlul = (fo - A)
16



Equation (4), when normalized, Is the same as the one obtained In Ref. I.

2. Two Degree of Freedom (DOF) System

For the two DOF system shown In Fig. 11-2a, Den Hartog (Ref. 6)

derived the result that under certain

conditions, the main mass M In the K PO sinwt

system does not move at all. M

This optimal condition can be obtained k I

using the limiting performance approach.

The equations of motion are (Fig. 11-2b) m

MX1 + KX1 + U = PO slnot (a) X2

mX2 - U = 0 K
Po sinat

Then 

U = Us sinwt + Uc coswt X

X = Xsi sinwt + Xcl coswt I = 1, 2 

U -P -U

I Mw2-K MW (b)
U -U
c X

2
- Figure 11-2

XIC MW2 -K 2c m2

Now, we want to find the U that minimizes IX1 1. This is equivalent to

finding the U that minimizes

X 2 + X 2 = 1 2+ F- c 1
Is Ic LM2_K LMw2_KJ

The solution Is seen to be

Us = PO' Uc = 0 and min maxlXll = O

Suppose now we modified the problem by putting a constraint on the rattle

space between the two masses. Now we seek min maxlX1l while IXI-X21 k A.
Stated in terms of a nonlinear programming problem, this becomes: Find

Us, U
c

to minimize

17



X1 2 + Xi 2

subject to

(X -x ) 2 + (X x )2 A2
(X 2s Ic X2 c

The solution (valid for the case Mw2 > K) is

U =P + 'U =
s I c

min maxiXll : i l 
IMw 2 - KI

where

_Mxp =2
-MW2 + K + mw2

Y= - A
m2 (MW2-K) A
M_2 -KmW2

This problem would be very difficult If It were to be treated using the

Den Hartog approach.
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where

Xjp 

X1 Jpi

x2 Jpl

XNJpl_

for p = s, c

Substitute (2), (3) into (I) and equate the coefficients of terms

cosiw.t and sinlwjt respectively. Then

(-Mi2 .2 + K) X - (Clwj) = Fj - V U- j js - Xjci IiJ - jsi

(CiW.) X.
_ J JsI

where F. = F
J -

(-Mi 2w 2 + K) X = -V U
- j - jcI - jcl

0

or

Ljs 

with

WSSJ i WSC i Ujsl

WCSsI WCC J
1 UJcl

L ~~~~i + j iJi

= Iss IJ
wcs wccJ

20

(4)

wji
_ _m

_ _



ZSj

ZCi i

-Mi2W.2 + K

- J
cij

J= Yj [Fj6 i]

-C -

-Mi2w.2 + K
_ j i

From (3) and (4) we have

L m
j= i=E

j=l i=l

RJ i Ji + Tmi]

where

R ji = WSSil sinli.t
-mj

+ WCS ji cosiw.t
J

WSCj l siniJ.t
J

+ wccJi coslWjti

TmJi = [Zi sinij t + ZCJ i

=mj i = Ujsi

- ]Ejci

Equation (2) can be rewritten as

L
0= F.

J=l

m

i=1
SC ji = ji
-- il m

where

SC J i = [
---i

sini t : I cosljit
j * - J

I Is a J x J identity matrix.

21
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(5)

(6)

2Jii

cosiwjt]



We have just expressed X and U in terms of the unknown coefficients

U . Following the procedure In Appendix IA, the limiting performancem
problem can now be placed in linear programming form with the coefficients

of U as unknowns.

22


